If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9m^2-12=0
a = 9; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·9·(-12)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*9}=\frac{0-12\sqrt{3}}{18} =-\frac{12\sqrt{3}}{18} =-\frac{2\sqrt{3}}{3} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*9}=\frac{0+12\sqrt{3}}{18} =\frac{12\sqrt{3}}{18} =\frac{2\sqrt{3}}{3} $
| 0.55x0.45(4-x)=0.9(-1) | | X+2x+x=31 | | 2(x2+1)=2 | | 3/4n+12=15 | | (3w-1)w=200 | | 3w^2-w-200=0 | | 5x3=20 | | 2-6t=5t-20 | | 2/3x-18=-24 | | 30x+10=180 | | 50+4t-4.9t^2=0 | | 2+0.5=12z | | 1x-9/10x+6=11 | | 5x+5-10=40 | | X-0.25x=15.99 | | ((2x)/3)=(1/4) | | -12=2x-5x+21 | | 45=9(x-5)+x | | 40/168=x/100 | | 10m=10-5(5m-7) | | 7x+3(70)=5x+5*70 | | 5r^2+r=0 | | -7(z+1)=-35 | | 1.35x+0.2=1.55x+3.2 | | 28=3(2x+6)+1 | | 5/7x=17 | | -36=-2(2a-4) | | -36=-2(2a-4 | | 0.03(10,000-x)+0.05x=100 | | 15x+10=6x-2 | | 6(y+1)=24 | | 6(y+1=24 |